Physical Science Notes 2-3 Acceleration

- Acceleration is the rate of change in the speed of an object.
 - $\circ~$ The units for acceleration are meters per second per second or m/s^2
- To determine the rate of acceleration for an object, you use the formula below.

Acceleration =
$$\frac{\text{Final Speed} - \text{Initial Speed}}{\text{Time}}$$

a =
$$\frac{V_2 - V_1}{T}$$
 T =
$$\frac{V_2 - V_1}{a}$$
 V_2 = V_1 + (a)(t)

• A positive value for acceleration shows speeding up, negative value for acceleration shows slowing down. Slowing down is also called deceleration.

Examples

A skater increases her velocity from 2.0 m/s to 10.0 m/s in 3.0 seconds. What is the skater's acceleration?

Looking For: Acceleration	Solution:
Given:	a= 10.0-2.0/3
Beginning Speed: 2.0m/s	
Final Speed: 10.0 m/s	a= 2.7 m/s ²
Change in time: 3 s	
Relationship	
$A = V_2 - V_1 / t$	

A car accelerates at a rate of 3.0 m/s^2 . If the car's original speed is 8.0 m /s, how many seconds will it take the car to reach a final speed of 25.0 m/s?

Looking For: Time	Solution:
Given:	T= 25-8/3
Beginning Speed: 8.0m/s	
Final Speed: 25m/s	T= 5.7 s
Acceleration: 3.0 m/s ²	
Relationship	
$T = v_2 - v_1/a$	

A cart has an initial velocity of 5.0 m/s, if it accelerates at a rate of 3.00 m/s² for 10 seconds, what is the final velocity?

Looking For: Final Speed	Solution:
Given:	V ₂ = 5.0 + (3 x 10)
Beginning Speed: 5.0 m/s	
Acceleration: 3.00 m/s2	V ₂ = 35 m/s
Time: 10 s	
Relationship:	
$V_2 = V_1 + (a \times T)$	