Physical Science Notes 2-3 Acceleration

- Acceleration is the rate of change in the speed of an object.
- The units for acceleration are meters per second per second or $\mathrm{m} / \mathrm{s}^{2}$
- To determine the rate of acceleration for an object, you use the formula below.

$$
\text { Acceleration }=\quad \text { Final Speed }- \text { Initial Speed }
$$

Time
$a=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{~T}}$
$\mathrm{T}=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{a}}$

$$
V_{2}=V_{1}+(a)(t)
$$

- A positive value for acceleration shows speeding up, negative value for acceleration shows slowing down. Slowing down is also called deceleration.

Examples

A skater increases her velocity from $2.0 \mathrm{~m} / \mathrm{s}$ to $10.0 \mathrm{~m} / \mathrm{s}$ in 3.0 seconds. What is the skater's acceleration?

Looking For: Acceleration	Solution:
Given: Beginning Speed: $2.0 \mathrm{~m} / \mathrm{s}$ Final Speed: $10.0 \mathrm{~m} / \mathrm{s}$ Change in time: 3 s	$\mathrm{a}=2.0 .7 \mathrm{~m} / \mathrm{s}^{2}$
Relationship	
$=\mathrm{V}_{2}-\mathrm{V}_{1} / \mathrm{t}$	

A car accelerates at a rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$. If the car's original speed is $8.0 \mathrm{~m} / \mathrm{s}$, how many seconds will it take the car to reach a final speed of $25.0 \mathrm{~m} / \mathrm{s}$?

Looking For: Time	Solution:
Given:	$\mathrm{T}=25-8 / 3$
Beginning Speed: $8.0 \mathrm{~m} / \mathrm{s}$	
Final Speed: $25 \mathrm{~m} / \mathrm{s}$	$\mathrm{T}=5.7 \mathrm{~s}$
Acceleration: $3.0 \mathrm{~m} / \mathrm{s}^{2}$	
Relationship	
$\mathrm{T}=\mathrm{v}_{2}-\mathrm{v}_{1} / \mathrm{a}$	

A cart has an initial velocity of $5.0 \mathrm{~m} / \mathrm{s}$, if it accelerates at a rate of $3.00 \mathrm{~m} / \mathrm{s}^{2}$ for 10 seconds, what is the final velocity?

Looking For: Final Speed	Solution:
Given:	$\mathrm{V}_{2}=5.0+(3 \times 10)$
Beginning Speed: $5.0 \mathrm{~m} / \mathrm{s}$	
Acceleration: $3.00 \mathrm{~m} / \mathrm{s} 2$	$\mathrm{~V}_{2}=35 \mathrm{~m} / \mathrm{s}$
Time: 10 s	
Relationship:	
$V_{2}=V_{1}+(\mathrm{axT})$	

