Notes Present Day Atomic Theory and Electron Configuration

- I. Modern Atomic Theory
 - i. The nucleus is composed of protons and neutrons
 - ii. Electrons travel around the nucleus in energy levels
 - 1. All the energy levels together make up the electron cloud
- II. Energy levels
 - i. A total of 7 energy levels exist, the closest to the nucleus is level 1
 - ii. Each element needs a specific number of energy levels to hold all of its electrons
 - iii. The last level, or the outermost, is called the **valence shell**.
 - 1. Valence electrons possess the most energy; they are the furthest from the nucleus.
 - 2. Valence electrons are involved in bonding.
- III. The exact location of a particular electron cannot be pinpointed
 - i. They are too small, too fast, and have way too much energy
 - ii. Heisenberg's uncertainty principle
- IV. Orbitals
 - i. A region of space within the electron cloud where there is a high probability of finding an electron.
 - 1. Where we think to our best knowledge where they are.
 - ii. Orbitals are named s, p, d, and f
 - 1. Each s-orbital can hold 2 electrons
 - 2. Each p-orbital can hold 2, but there are 3 different shapes

- 3. Each d-orbital can hold 2, but there are 5 different shapes
- 4. Each f-orbital can hold 2, but there are 7 different shapes
- V. So What does this have to do with chemistry
 - i. On the atomic level how an atom's electrons are arranged controls how it will behave in a chemical reaction.
- VI. Electron configuration
 - i. A detailed "address" for the electrons of any given element
 - ii. Rules to follow when completing an atoms electron configuration
 - 1. Electrons must fill the lowest energy level first

a. Aufbau Principle

2. A maximum of 2 electrons can fit in an orbital, each orbital must have one electron before doubling up.

a. Pauli's Exclusion Principle

3. Electrons that are doubled up must have opposite spins

a. Hund's Rule

Examples

Write the electron configurations for the following elements

Ι.	Nitrogen	$1s^{2}2s^{2}2p^{5}$
II.	Lithium	1s ² 2s ¹
III.	Carbon	1s ² 2s ² 2p ⁴
IV.	Sodium	1s ² 2s ² 2p ⁶ 3s ¹
V.	Argon	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
VI.	Magnesium	1s ² 2s ² 2p ⁶ 3s ²